
J .  Fluid Mech. (1973), voE. 59, part 3, p p .  481-491 

Printed in Great Britain 
48 1 

Viscous-gravity spreading of an oil slick 

By J. BUCKMASTER 
Department of Engineering and Applied Science, Yale University 

(Received 2 February 1973) 

A two-dimensional oil slick is examined as it spreads on water under the influence 
of gravitational and viscous forces. An exact analytical and numerical description 
of the flow is obtained in a certain rational asymptotic limit. The central result 
is an expression for the size of the slick as a function of time. This expression 
contains no free parameters to be empirically determined, and is in substantial 
agreement with experiment. 

~ ~~ 

1. Introduction 
In  an ecologically minded age, it is not surprising that there is substantial 

interest in understanding and describing the physical processes that govern the 
spread of an oil slick on water. A recent review article (Hoult 1972) makes it 
quite clear that, a t  the present time, we have a crude qualitative understanding 
of the mechanisms involved, but much remains to be done in providing a detailed 
quantitative picture of the flow. 

Fay (1969) has shown, by essentially dimensional reasoning, that there are 
three stages in the spread of an initially concentrated volume of oil. At first, 
there is a balance between gravitational forces, which tend to spread the oil 
over the surface, and resistive inertial forces which arise from the associated 
acceleration. After some time has elapsed, the slick becomes so thin that the 
inertial forces become negligible in comparison with the viscous drag generated 
by the flow of the oil over the water. At even larger times, the third stage 
emerges, in which surface tension replaces gravity as the driving force. 

These three stages are all characterized by power laws governing the size of 
the slick as a function of time. The exponents in these laws are well confirmed by 
experiment, for both plane and axisymmetric slicks (Hoult 1972). However, 
Fay’s analysis does not predict the proportionality constants in these laws, nor 
does it provide any details of the distribution of velocity in the flows. 

A start on these more complicated questions has been advanced by Hoult 
(1972), who suggests that associated with each of the last two stages are simple 
similarity solutions of the governing equations. There are several reasons to 
believe that this idea contains flaws, and some of them will be discussed in $2.  
Nevertheless, Hoult’s discussion contains several ideas that are crucial in 
generating a rational analytic theory, and the present author’s indebtedness to 
this work will soon become apparent. 

The problem examined in this paper is that of a two-dimensional slick in the 
second stage, that is, a slick spreading under the influence of gravitational and 
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viscous forces. The primary concern is to derive, with no ad hoc assumptions, an 
explicit expression for the size of the slick as a function of time. We shall start 
by repeating those elements of Fay’s discussion that are relevant to the present 
problem, as well as listing the basic assumptions that are needed to carry out the 
analysis. 

Suppose that the extent of the slick is characterized by a length I and its 
thickness by h. Then the inertial force acting on the oil has order of magnitude 

plt-2(hZ). 

Here, p is the density of the oil, but this is assumed to be so close to the water 
density in value that it is only necessary to distinguish between them in cal- 
culating the net gravitational force. Time is represented by t. 

The water boundary layer has thickness of order (vt)$, where v is the kinematic 
viscosity. Consequently the viscous drag acting on the slick is 

pvlt-l(vt)-: 1. 

Comparing the above two retarding forces, we see that the viscous drag will 
dominate the d’Alembert force provided 

(vt)a 9 h, (1 .1)  
that is, if the boundary-layer thickness is much larger than the thickness of the 
slick. This is an important simplification in that, as far as the boundary-layer 
calculations are concerned, the slick may be regarded as a flat sheet. 

Of course, a boundary-layer description of the water flow is only appropriate 
if the Reynolds number is large, which implies that 

1 B ( v t ) k  

The gravitational driving force has magnitude 

pgAhh, 
where A is the fractional density difference between the oil and the water. This 
balances the viscous drag provided 

1 - tt(gA)* V b A ,  (1.3) 

where V - hb is the slick volume. This is one of Fay’s results, and the exponent 
# has been verified experimentally. 

The inequalities (1.1) and (1.2) can now be rewritten as 

(gA)z V4r5 9 t $ (gA)+ VSv-+.. 

Thus the theory we shall develop is valid for large times, but not too large in 
a sense that depends essentially on the volume of the sliok, the only variable 
parameter once the liquids are specified. 

Other assumptions are also needed in the course of the analysis. Thus the net 
surface tension force is assumed to be so small that it can be neglected. In  addition, 
considerable simplification arises if the oil velocity does not change significantly 
across the thickness of the slick. Such a slug flow description is valid provided 

pvh/&-l(vt)-& << 1, 
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FIGURE 1. Oil slick on water. 

where ,uo is the oil viscosity. This may be rewritten as 

(pv/p,)8 < t(gA)+ V - W .  (1.4) 

Hoult (1972) advooates use of the slug flow approximation, which he claims is 
valid provided the oil viscosity is large enough. However, the right side of the 
above inequality is much larger than I, by hypothesis, SO that the assumption 
is accurate without any undue restrictions on the oil viscosity. 

Finally, since the slick and the boundary layer are thin, there is hydrostatic 
equilibrium in the vertical direction. 

2. Analysis of the flow field 
The oil slick is assumed to have width 2R(t), where 

R(t) = Cta. 

cc is known to have the value # (equation (1.3)), but this should also emerge 
from our analysis. The dependence of C on the various flow parameters is also 
known from ( i .3) ,  but the aotual numerical value is not known a prior;. The basic 
purpose of our analysis is to derive an explicit expression for C. 

The slick lies in y = 0 (figure i), with the water occupying the half-space y > 0. 
The half-space y < 0 is occupied by air, which plays no role in the analysis. 

The equations governing the water flow are the unsteady boundary-layer 
equations 

au/ax+avpy = 0. (2-3) 

The oil slick is characterized by a velocity q(x, t )  and its thickness h(x, t) .  Thus 
the continuity equation for the oil is 

ah/at + a(qh)/ax = 0. (2.4) 
31-2 
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The gravitational forces generate a horizontal pressure gradient in the oil, and 
the force associated with this is balanced by the shear stress acting at the oil- 
water interface. Inertial forces play no role in this balance by virtue of (1.1). 
Thus the momentum equation for the oil may be written (Hoult 1972) as 

The mathematical formulation is completed by certain boundary conditions. 
Thus, 

and limu(x, y; t )  = 0. 
y+m 

(2.6a) 

(2.6b) 

In  addition there is symmetry about the y axis, and at the edge of the slick q is 
equal to the edge velocity, i.e. 

a ( R ( t ) , t )  = m. (2.7) 

The following argument suggests that the problem is properly posed, at the 
same time describing the basic details of the procedure used to solve it. 

Suppose that the velocity q is a given function of x and t .  Then the boundary- 
layer problem in the water can be solved, in principle, giving rise to a known 
distribution of skin friction. Equation (2.5) can then be integrated to determine 
h(x, t ) ,  noting that h vanishes at the edge of the slick. The continuity equation 
(2.4) will then only be satisfied if the original choice of q is correct. Once a self- 
consistent solution has been obtained, the volume of the slick can be calculated 
by integrating 12. This determines the unknown constant C in (2.1). 

At first sight this might seem to be a very difficult problem, since, for example, 
the boundary-layer flow apparently depends on three independent variables. 
However, although the problem does have a reference length, namely V4, and 
also a reference velocity (gA)4 V$, the relation (2.1) suggests that these only 
appear in the particular combination 0. In  that case the flow depends only on 
two independent variables, and this is the essential foundation of our analysis. 

2.1. Structure i n  the neighbourhood of the origin 

It is instructive to consider the nature of the boundary-layer flow in the neigh- 
bourhood of x = 0. To this end we introduce the stream function defined by 

which satisfies the equation 
u = a$py, v = -a$/ax, 

a2$ a$ a2+ a$a2$ a3$ 
V - .  (2.8) ayat ay ayax ax ay2 ay3 

-+----- = 

A solution is sought in the form 

$ = v4zt-W(y,P), 

where y = X/CtQ, /3 = y/(Yt)) .  
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The function F then satisfies the equation 

Fppp + Fp,M + 3) + Fp - F j  = Y (FpFyj - q q p -  aFyp), 

F = Eb(P), 

(2.10) 

and a simple similarity solution arises if it  is assumed that F is independent of 
y, i.e. 

so that zc = &lF;(P). 

Hoult suggests that this is an appropriate description of the flow throughout 
the boundary layer, but this cannot be correct. The basic objection is that the 
boundary-layer thickness, in such a description, is independent of x, and this 
must be incorrect in the vicinity of the leading edge. A more general structure, 
capable of meeting this objection, is 

~ ( 7 ,  P )  = + 5 cnYunFn(B), (2.11) 
n=l 

where {un} is a positive increasing sequence of real numbers. The equations 
satisfied by F, and Fl are 

F ~ + F ~ ( + P + F o ) + F i - F ~ 2  = 0, (2.12) 

Fr +P’;($P+Fo) + Fi( 1 +#@I-  2Fh - w ~ F ; )  +F,(1 + @ I )  F: = 0 (2.13) 

and the solutions of these equations have been investigated numerically. In  
order to  do this it is necessary to specify certain boundary conditions at the 
wall. From (2.6a), 

is immediate, but since q is unknown, the best we can do is represent it as a series 
in powers of y. This introduces too much generality to make a numerical in- 
vestigation of (2.12) and (2.13) convenient, however, so that instead we shall take 

F(7,O) = 0 

Fp(Y,O) = a, 

corresponding to q = axt-1. 

The broad qualitative features of solutions corresponding to this choice are un- 
likely to differ from those arising from a more general choice. Moreover, as will 
be shown later, this particular choice of q is the right one for our problem. The 
conditions on the Fn are then 

Fn(0) = 0, Fi(0) = a, FL(0) = 0 (n 3 l), limFA(P) = 0. (2.14) 
B-+m 

Unfortunately, these do not ensure a unique solution for the Fn. The essential 
difficulty can be isolated by considering the behaviour for large P. Linearization 
about the solution at infinity (Fn = constant) suggests that the asymptotic solu- 
tion for FA contains two independent terms, both of which vanish in the limit, 
namely 

Consequently, any choice of Fi(0)  will lead to a solution satisfying the given 
boundary conditions. 

/3-24Un, P1eWn exp { - &[P+ 2Fn(o0)l2). 
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The nature of the solutions for Fb has been investigated numerically, for a choice 
of cx equal to 8. 

If Fi(0) is positive, there are points in the boundary layer at which the water 
velocity exceeds that of the slick at  the same values of x and t. Intuitively, we 
might feel justified in excluding such solutions. 

If Fi(0)  < - 0.0124 the boundary layer contains regions of reversed flow, and 
presumably these also can be rejected on intuitive grounds.? 

For values of Fi(0) in the closed interval [ - 0-0124,0], the x component of 
velocity is a monotone decreasing function of p. Moreover, a t  the left-hand limit 
of the interval the behaviour at  infinity is exponential, whereas for all other points 
it is algebraic. It may be conjectured, then, that 

F;(O) = -0.0124. (2.15) 

The reasons for favouring the exponential solution have their origin in higher 
order boundary-layer theory (see the discussion by Brown & Stewartson (1965)). 
More precisely, it may be argued that the boundary-layer flow must approach 
the free-stream conditions exponentially, except possibly at isolated points. 
Consequently, an expansion of the form (2.11), in which each term has algebraic 
decay, cannot be valid for large p. If, as sometimes is the case, exponential 
behaviour cannot be forced, an ‘outer’ expansion must be found in which each 
term exhibits exponential decay except at  x = 0 (the acceptable isolated point). 
This outer expansion must match, in the usual sense, with the ‘ inner ’ expansion 
(2.11). In  the present problem, exponential decay can be forced for the inner 
expansion, and doing this is tantamount to assuming that an alternative, two- 
layer structure does not exist. It boils down, in the end, to a uniqueness assump- 
tion. 

The function F, is now uniquely determined, and we may turn to the equation 
for PI. Since the equation and its boundary conditions are homogeneous we may 
choose Fi(0) = 1 without loss of generality. Exponential behaviour is then forced 
by appropriate choice of the parameter ul. Indeed it can be anticipated that 
there is a countably infinite number of possible values of w1 which will lead to 
an acceptable solution. Numerical integration shows that the first two in this 
list are 

4.966, 8.248. (2.16) 

Such large values imply that the skin friction varys most rapidly in the vicinity 
of the leading edge (y = 1). 

In  principle, all the F, and w, may now be found, in a systematic manner, 
but this does not lead to a uniquely defined boundary-layer flow. The reason 
is that an infinite number of the C, in (2.11) are undetermined. Such non- 
uniqueness is typical of downstream expansions of steady boundary-layer flows; 
it arises in these other problems because of failure to account adequately for 
initial conditions (upstream data). In  all known cases for which the boundary 
layer is viscous, the non-uniqueness manifests itself in the form of an infinite 

t Hoult’s (1972) solution exhibits reversed flow but this is a direct result of insisting 
that the one-term similarity solution is valid all the way to the leading edge. 
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FIGURE 2. Boundary layer in leading-edge-fixed frame. 

number of undetermined constants. (Grosser manifestations are possible if the 
boundary layer contains an inviscid region, and this is presumably related to 
the downstream convection of an unknown distribution of vorticity. Examples 
are given in the work of Buckmaster (1971) and Burggraf, Stewartson & Belcher 
(1971).) It is reasonable to conclude, then, that in some sense the expansion (2.11) 
is a 'downstream' expansion. Thus it might be more fruitful to integrate from 
the leading edge of the slick. 

2.2.  Structure in the neighbourhood of the leading edge 

The solution near the leading edge of the slick is best described in a frame that is 
moving with the right-hand edge of the slick (figure 2). In  this frame, the 
boundary-layer equations become 

where 

The boundary conditions are 
v(5,O; t )  = 0, 

lim G(2, y; t )  = aCtU-l, 
v+m 2 4 0  

lim.ii(Z,O; t )  = 0. 

Introducing the stream function by 

G = a$/ay, v = -a$/az, 

we seek a solution in the form 

where 

(2.17) 

(2.18) 
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The function G satisfies the equation 

G,,,+GC,, = 2E(G,G115-G5G11~-5G,5)+25(a- l)a-l(Gq+&jG,,- 1) (2.19) 

together with the boundary conditions 

G(5,O) = 0, lim G,(& q) = 1. 
11+* 

Expansion of G as a power series in 6, 

~ ( t , q )  = 5 tnGn(q), 
TZ=O 

then leads to a sequence of equations satisfied by the G,, the first few of which 
are G{ +G,G," = 0, (2.20a) 

(2.20 c) 
G?+G,Gi- 2GLG;+3G,"G1 = J$-y(GA+iqG,"), (2.20 b)  

G t  + Go Gi - 4GA GL + 5Cb G2 = 2G;' - 3G1Gi - 2Gi -A$( G; + &jGi), 
G[ + G,G," - 6G; GJ + 7G; G, = 6G;Gi - 3GlGi- 5G2G1 

- 4GH - y(GH + &jGi). ( 2 . 2 0 4  

These are to be solved subject to the boundary conditions 

GJO) = 0, limGk(q) = GA(0) = 0. (2.21) 
11-00 

Note that, for the moment, the GA(0) are not known for n 2 1. Nor, for that 
matter, are the GL(O), but they are related to the GA(0) through equations (2.20). 

The skin friction a t  the oil-water interface is 

4, a.l;i; - (2,O; t) = (aCta-l)3 ( 2 ~ i 3 - 4  
a Y  n= 0 

EnGi(0) 

and using this it is possible to write down an expansion for the thickness of the 
slick. Specifically, we integrate (2.5) and find that 

(2.22) 

At this juncture, the value of a may be determined by consideration of the 
volume V of the slick. This is defined as 

V = CtUIo1hd& 

It may be objected that this is, in reality, but one half of the volume. However, 
our definition agrees with that of Hoult (1972) and we retain it to facilitate com- 
parison with experimental results cited in his article. 

With the aid of (2.22), the volume can be written as 

(2.23) 

and this is only independent of time if a is assigned the value #. An alternative 
problem, which might have practical significance, corresponds to a choice of V 
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that increases linearly with time (source problem). This corresponds to a value 
of a equal to f and we do not consider it here. 

The speed of the oil slick is given by the expression 

n=O 

Substituting this and (2.22) into the oil continuity equation (2.4), which may be 
written in the form 

- a ( h 2 ) f a C t a - l ~ ( h z ) - q ~ ( h 2 ) - 2 h Z -  a a aq = 0, 
at 82 

yields a relation between the components of q and the components of the skin 
friction, namely 

p G i ( 0 )  
+ 2  I: - tnnGk(0) = 0. (2.25) 

n=O n + l  2 n=O 

It is easily verified that, when a = 9, the solution of this infinite set of equations is 

GI(0) = 1, GA(0) = 0, n 2. (2.26) 

Remarkably enough, the velocity of the oil is then given by the very simple 
expression 

q = gx/t (2.27) 

as was assumed in 3 2.1. An alternative way of deducing this result is to note that, 
when a = 8, the continuity equation is identically satisfied by solutions of the 
form 

q = axlt, h = t"-y(&.), 

where f is an arbitrary function. No such simple solution exists for different 
choices of a (e.g. the source problem) and for the remainder of the paper a will 
be explicitly assigned the value #. 

With the velocity components a t  the interface now specified, the Gn are 
uniquely defined, and in particular the Gi(0) may be systematically evaluated by 
numerical means. The thickness of the slick is now known in principle since it 
is given by (2.22), and moreover C may be determined from (2.23) by summing the 
series. 

Table 1 shows the firstrsix skin-friction coefficients. Unfortunately, these are 
too large to  lend any credence to the idea that the series can be easily summed. 
This is consistent with the prediction of $2.1 that the skin friction varies rapidly 
in the vicinity of the leading edge, and forces us to construct the solution in 
a different manner. This is the subject of 3 3. 
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n 0 1 2 3 4 5 

G:(O) 0.46960 - 1.99999 1.19382 2.09429 4.78127 8.71400 

TABLE 1 

3. Evaluation of the slick size 
The essence of the problem is to solve the equations 

( 3 . 1 ~ )  

(3.1b) 

subject to the boundary conditions 

C(2, 0; t )  = #Ct-q, v(2,O; t )  = 0, 

limc(2, y; t )  = @t-S. 

Note that this complete formulation is only possible because of the results of 3 2, 
specifically (2.27). 

This problem is readily solved numerically after being cast in terms of the 
variables of $2.2. Specifically, (2.19) may be integrated from the leading edge, 
using a step-by-step procedure. The solution is started using the series expansion 
for small developed in $2.2 and then is continued using, essentially, the 
method described by Terrill(l960). The thickness of the boundary layer on the 7 
scale is found to decrease with increasing 5. 

The skin friction is of primary interest and was computed a t  intervals in 
of 0.025 starting at  = 0.1, the point where the series expansion (the six leading 
terms) was abandoned. Table 2 shows some of the results, including those of the 
series expansion. 

= 1. may be compared with the local solution 
described in § 2.1. We find that G,J0.9,0), evaluated numerically, differs from 
the prediction of the one-term similarity solution by about 2 x This must 
represent the limit in accuracy of both calculations. 

Once the skin friction is known, the slick thickness may be found (cf. equation 
(2.22)). Table 3 shows values of I?((), where 

u-+m 

The results in the vicinity of 

h = vg(gA)-i Ct-#H(c). (3.2) 

It is apparent that the slick is very blunt in shape, coming within 10 % of its 
maximum thickness at a value of c less than 0.2. 

The calculation is completed by integrating the thi6kness to find the volume 
(cf. equation (2.23)). This leads to a value of C, whence the size of the slick is 

R(t) = 1*76(gA)g Vb-W. (3.3) 

This is to be compared with experimental results, for which the coefficient that 
best fits the data is 1.5 (Hoult 1972). Thus the error is approximately 17 %. 
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E 
0 
0.025 
0.05 
0.075 
0.10 
0.125 
0-150 
0.175 
0.20 
0-225 
0.25 

G,,(f, 0) 
P 
Numerical Series 

- 0-4696 
- 0.420 
- 0.373 
- 0.327 
- 0.284 

0.244 0.244 
0-207 0.207 
0.173 0.173 
0.144 0.145 
0.119 0.121 
0.099 0.104 

TABLE 2 

E 
0.275 
0.30 
0.325 
0-35 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 

G,,E 0) 
P 
Numerical Series 

0.084 0.095 
0.072 0.093 
0.062 0.103 
0.055 - 
0.045 - 
0.036 - 
0.028 - 
0.021 - 
0.015 - 
0.008 - 

6 
0 
0.002 
0.004 
0.006 
0*008 
0.01 
0.02 
0.03 
0.05 
0.075 
0.10 

H(6)  
0 
0.117 
0.138 
0.153 
0-164 
0.173 
0.205 
0.225 
0.252 
0.274 
0.289 

TABLE 3 

5 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1 .o 

H ( 0  
0.308 
0.319 
0.329 
0.334 
0.337 
0.339 
0-340 
0.341 
0-342 
0-342 

Although the theoretical result is in substantial agreement with experiment, 
the error is, perhaps, larger than might have been anticipated a priori. After 
all, it would be necessary to double the theoretioal skin friction to get the co- 
efficient within a few per cent of 1-5. The reason for the discrepancy is not clear. 
Perhaps the boundary layer is turbulent, rather than laminar, as assumed here. 
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